AUTO-WINDOW

AUTO-WINDOW

ME106 PROJECT: Spring 2021
By: Team JEE
Joshua Cooney, Ehsan Al-Agtash, Eduardo Molina

THE PURPOSE

e Making life easier, to open and close the window
automatically
o Manual and automatic modes
o 3 sensors: time,gas,temperature

e Increased safety
e |ess worry throughout the day

SPECIFICATIONS

e \Window dimensions: 23.5 inches X
23.5 inches

e T[wo motors

e Motor1: @7v

e Noload current: .17 A
e No load speed: 160 RPM
e Gear ratio: 120:1

e Motor2 @7v

No load current: .17 A
No load speed: 160 RPM
Gear ratio: 120:1

Stall torque: .8 kgf-cm
Rated torque: .2 kgf-cm

O O O O O

PRIMARY COMPONENTS

A. Real time clock sensor
B. Alcohol and VOC gas
sensor “~»»,;2::m/0.791n
Temperature sensor e f’g.Scm/o.smn
DC electric 6 volt motor -
Belt pulley wheel
H-Bridge L298N

Nrf board

Power supply

' 7cm/2.76in

TO®mmOO

Cost Analysis

Goal

Keep under $50
e Use most of the parts in kit
e Use one motor to move the
window

. \\'\?\% i\,:\nm—\-
AN \“\\\\\,!\; «11%% v
B A ANASR Al

0y

Outcome

e Total cost of the prototype
o $9-temp sensor

o $5 - real time clock
o $14- voc alcohol and gas sensor
o $4- solid wire
o $10- pulley wheel set
o $7-two motors
e Total= $49

(shipping, mishaps, labor and other cost not included)

THE DESIGN

Simple design sketch: motors move clockwise to close and counter
clockwise to open

; The state diagram with a priority directive A followed by
State dlagram B then C and finally D to open/close the window

as/toxm IS not detected

(B)
| gas/toxin is detected| manual operation P if button is pushed ~
as
g do nothing open window : :
sensor close window open window

/v if temperature > set temp \

if set temperature < set temp

/, if time = set time to open \

open window

\m

temperature input

#include librarys
import busio

import time

import board

import pulseio

import digitalio
#sensor

import adafruit_pcf8523
import adafruit_mcp98es
import adafruit_bme68o

#INSIDE SENSORS

#identify the pins for time sensor
myI2C = busio.I2C(board.SCL, board.SDA)
rtc = adafruit_pcf8523.PCF8523(myI2C)

#assign inside temperature
mcp = adafruit_mcp9808.MCP980@8(myI2C)

#OUTSIDE SENSOR
#BME sensor

bme680 = adafruit_bme680.Adafruit_BME680_I2C(myI2C, address = 0x76)

#Motor Declerations
Motor

= pulseio.PWMOut(board.D6)

= digitalio.DigitalInout(board.D9)
IN1.direction = digitalio.Direction.OUTPUT
IN2 = digitalio.DigitalInout(board.D10)
IN2.direction = digitalio.Direction.OUTPUT
#Right motor

= pulseio.PwWMout(board.D13)

= digitalio.DigitalInOut(board.D11)
IN3.direction = digitalio.Direction.OUTPUT
IN4 = digitalio.DigitalInout(board.D12)
IN4.direction = digitalio.Direction.OUTPUT

#ENA/B used to control motor speed
#digitalio used to change polarity of motors

#Initialize time and date.
if True: # change to True if you want to write the time!

year, mon, date, hour, min, sec, wday, yday, isdst
t = time.struct_time((2021, o5, 10, 18; 28; A5; 30, -1, -1))

you must set hour, min, sec and weekda

yearday 15 not supported, isdst can be set but we don't do anything with it at this time

print("setting time to:", t)
rtc.datetime = t
print()

uncomment for debugging

#DEFINITIONS

def manual (Wstate):
while True:

if (Wstate
s

else:
s

input("Press Enter to " + s + "

#choice = int(choice)

if choice == "* and Wstate != True:
print("opening...")
togglewindow(True) #open window
Wstate = True #window open
time.sleep(1)

elif choic " and wstate |= False:
print("Closing...")
togglewindow(False) #close window
wstate = False #closed
time.sleep

elif choic Q" and choice 1=
print("Invalid Entry - Please Try Again.")

window, or Q to quit to Menu: ").strip().upper()

uitting to Main Menu")
)
return Wstate

def Auto():
i

False #User inputs must all be valid to move into auto loop where ui = True
while ui == False:

#Get Time Settings

times = input(“set Window Open/Close Schedule? (Y/N): ").strip().upper()

while (times I= "v" and times 1= "N"):

times = input(“Please Enter (Y/N): ").strip().upper()

if times &

numtimes =

#ask to set window schedule
#get Y or N input

int(input(“How many Times do you want to Schedule? Max 3: ")) #number of opening/closing time slots

while (numtimes < 1 or numtimes > 3):
nuntimes = int(input("Please Enter 1 to 3 schedules only: "))
timesopen = [1]*nuntines
timesclose = [1]*numtines
cont = False #Allow user to continue if schedule is correct - cont = True
while (cont 1= True):
conflict = False #no conflicts
for x in range(nuntimes)
#put users opening and closing schedules into their respective arrays.
timesopen[x] = round(float(input("Enter Opening Time for Schedule "+ str(x+1) + " in military Time: ")), 2)
timesclose[x] = round(float(input("Enter Closing Time for Schedule * + str(x+1) + " in Military Time: ")), 2)
if timesclose[x] <= timesopen[x]:
conflict = True
cont = False
t("scheduling Conflict: Error *Opening Time must come before Close Timex")
print("Please Re-Enter Schedule”)
break

#check for schedule conflict, if conflict, then ask them to reschedule.
#WARNING SUPER EASY TO GET CONFUSED, TRUST IN LOGIC
if numtimes = 1 and conflict != True:

#This parameter is set so that if no conflict is found in first 2 schedules, schedule 3 is still checked (if there is one)

if (nuntimes == 2 or numtines == 3): #Check first 2 schedules for time conflicts.
if (timesopen[1] >= timesopen[o] and timesopen[1] <= timesclose[e]) or (timesClose[1] >= timesopen[e]
cont = False
checks = False
print(“schedule confliction...")
elif nuntimes == 3 and check3 == True

and timesclose[1] <= timesclose[0]):

cont = False

if (timesopen[2] >= timesopen[e] and timesopen[2] <= timesClose[0]) or (timesClose[2] >= timesopen[e] and timesclose[2] <= timesClose[o])
print(“schedule Confliction...")

elif timesopen[2] >= timesOpen[1] and timesopen[2] <= timesClose[1]or (timesClose[2] >= timesOpen[1] and timesClose[2] <= timesclose[1]):
cont = False
print("schedule Confliction...")
else:
print("schedule Logged")
cont = True
else:
print("schedule Logged")
cont = True
elif conflict I= True:

sensor

Temperature ;
2 B Real time
sensor BN Clock

—
it

SCHEMATIC Circuit Diagram
DIAGRAM

nRF

Real time clock

n

Temp
sensor

POWER SUPPLY

-]

SDA
vce
P GND
SDO

H-BRIDGE L298N Gas

sensor

VOC ALCOHOL AND
GAS SENSOR

TEMPERATURE
SENSOR

REAL TIME CLOCK —
SENSOR ﬂ

= — out

MOTORS

power supply

DEMO

CHALLENGES

Cost

Issues with having parts

delivered
e \Working on the project via I

Zoom —
e Schedule conflictions il’
e Soldering all the components | = %&Q@}Té L
e Coding i%@ =<
e (Going through gas sensors ™ > ..Q

TSRS

The Gas Sensor

Several error messages
from both gas sensors

Uses resistors to
determine gas value, but
was stuck at constant
value

Wrong address id default
o Changed to ID 0x76

adafruit_bme680.py

import time
import board
from busio import I2C
import adafruit_bme680

i2c = I2C(board.SCL, board.SDA) # uses board.SCL and board.SDA

O 0N O A W N

bme680 = adafruit_bme680.Adafruit_BME680_I2C(i2c, debug=False)

-
(=}

change this to match the location's pressure (hPa) at sea level
12 bme680.sea_level_pressure = 1013.25

-
-

14 # You will usually have to add an offset to account for the temperature of
15 # the sensor. This is usually around 5 degrees but varies by use. Use a
16 # separate temperature sensor to calibrate this one.

Adafruit CircuitPython REPL

Press any key to enter the REPL. Use CTRL-D to reload.soft reboot

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):

File "code.py", line 9, in <module>

File "adafruit_bme680.py", line 436, 1in __init__

File "adafruit_bme680.py", line 136, in init

RuntimeError: Failed to find BME680! Chip ID 0x40

soft rebootey to enter the REPL. Use CTRL-D to reload.

Gas sensor continued

e Sdo pin to ground was
one solution but
another problem
came up

e (Gas output remained
constant even
introduced to 2
different samples

e Ultimately after tests
concluded both were
just defective

18
19 while True:

2 print("\nTemperature: %0.1f C" % (bme680.temperature + temperature_offset’
2 print("Gas: %d ohm" % bme680.gas)

2 print ("Humidity: %0.1f %%" % bme680.relative_humidity)

bE} print("Pressure: %0.3f hPa" % bme680.pressure)

% print("Altitude = %0.2f meters" % bme680.altitude)

25

2% time.sleep (1)

Temperature: 19.5 C

5as: 177 ohm

dumidity: 41.5 %
>ressure: 994.391 hPa
Altitude = 158.22 meters

Temperature: 19.5 C

5as: 177 ohm

dumidity: 41.4 %
>ressure: 994.386 hPa
Altitude = 158.26 meters

CONCLUSIONS AND RECOMMENDATIONS

e \Would create a housing for
the device

e Make for easy installation
and adjustment for most
windows

e Adjust the design to only
need one motor

e Include a feature to save set
settings for ease of access

e Add a bluetooth function for \ . _
control ==) side view

e Manage time better

back view

Housing design for the prototype

What was learned and challenges (eduardo molina)

What i learned was:

How to manage time much more efficiently

How to wire the microcontroller to allow the sensors to function
How to interpret circuit schematics/ diagrams

How to work collaboratively

Some challenges were:

e Remote meetings over zoom when testing

e Having to work with everyone's different schedules

e Balance- to do work on the project, as well as other courses and family
responsibilities

What was learned and challenges (Joshua Cooney)

What | learned was:

e How to coordinate a project and work with my group over distance

e How to take a design and create a physical model
How to better work with sensors and python to create an intuitive software
experience

e How to solder components, and deeper understanding of circuitry

Some challenges were:

e Time and energy management
Working in a less familiar programming language (Python)

e Distance between group mates and having only one physical model to test
with.

e (Gas sensors not working properly despite extensive troubleshooting

What was learned and challenges (Ehsan Al-Agtash)

What | learned was:

Connecting 3 sensor together using the same pins

Wire management

How import is it to design and do rough sketches before rushing to do a prototype
How important testing is before building the prototype

Reading circuit diagrams, pulling up motor specifications

Soldering pins to boards

Some challenges were:

e Prioritizing school work and projects

e Time managements

e Working over zoom and rarely meeting up

e Struggling to get the VOC/Gas sensor to work

QUESTIONS?

